In this notebook, some template code has already been provided for you, and you will need to implement additional functionality to successfully complete this project. You will not need to modify the included code beyond what is requested. Sections that begin with '(IMPLEMENTATION)' in the header indicate that the following block of code will require additional functionality which you must provide. Instructions will be provided for each section, and the specifics of the implementation are marked in the code block with a 'TODO' statement. Please be sure to read the instructions carefully!
Note: Once you have completed all of the code implementations, you need to finalize your work by exporting the Jupyter Notebook as an HTML document. Before exporting the notebook to html, all of the code cells need to have been run so that reviewers can see the final implementation and output. You can then export the notebook by using the menu above and navigating to File -> Download as -> HTML (.html). Include the finished document along with this notebook as your submission.
In addition to implementing code, there will be questions that you must answer which relate to the project and your implementation. Each section where you will answer a question is preceded by a 'Question X' header. Carefully read each question and provide thorough answers in the following text boxes that begin with 'Answer:'. Your project submission will be evaluated based on your answers to each of the questions and the implementation you provide.
Note: Code and Markdown cells can be executed using the Shift + Enter keyboard shortcut. Markdown cells can be edited by double-clicking the cell to enter edit mode.
The rubric contains optional "Stand Out Suggestions" for enhancing the project beyond the minimum requirements. If you decide to pursue the "Stand Out Suggestions", you should include the code in this Jupyter notebook.
In this notebook, you will make the first steps towards developing an algorithm that could be used as part of a mobile or web app. At the end of this project, your code will accept any user-supplied image as input. If a dog is detected in the image, it will provide an estimate of the dog's breed. If a human is detected, it will provide an estimate of the dog breed that is most resembling. The image below displays potential sample output of your finished project (... but we expect that each student's algorithm will behave differently!).
In this real-world setting, you will need to piece together a series of models to perform different tasks; for instance, the algorithm that detects humans in an image will be different from the CNN that infers dog breed. There are many points of possible failure, and no perfect algorithm exists. Your imperfect solution will nonetheless create a fun user experience!
We break the notebook into separate steps. Feel free to use the links below to navigate the notebook.
Make sure that you've downloaded the required human and dog datasets:
Note: if you are using the Udacity workspace, you DO NOT need to re-download these - they can be found in the /data
folder as noted in the cell below.
Download the dog dataset. Unzip the folder and place it in this project's home directory, at the location /dog_images
.
Download the human dataset. Unzip the folder and place it in the home directory, at location /lfw
.
Note: If you are using a Windows machine, you are encouraged to use 7zip to extract the folder.
In the code cell below, we save the file paths for both the human (LFW) dataset and dog dataset in the numpy arrays human_files
and dog_files
.
import numpy as np
from glob import glob
# load filenames for human and dog images
human_files = np.array(glob("/data/lfw/*/*"))
dog_files = np.array(glob("/data/dog_images/*/*/*"))
# print number of images in each dataset
print('There are %d total human images.' % len(human_files))
print('There are %d total dog images.' % len(dog_files))
In this section, we use OpenCV's implementation of Haar feature-based cascade classifiers to detect human faces in images.
OpenCV provides many pre-trained face detectors, stored as XML files on github. We have downloaded one of these detectors and stored it in the haarcascades
directory. In the next code cell, we demonstrate how to use this detector to find human faces in a sample image.
import cv2
import matplotlib.pyplot as plt
%matplotlib inline
# extract pre-trained face detector
face_cascade = cv2.CascadeClassifier('haarcascades/haarcascade_frontalface_alt.xml')
# load color (BGR) image
img = cv2.imread(human_files[0])
# convert BGR image to grayscale
gray = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY)
# find faces in image
faces = face_cascade.detectMultiScale(gray)
# print number of faces detected in the image
print('Number of faces detected:', len(faces))
# get bounding box for each detected face
for (x,y,w,h) in faces:
# add bounding box to color image
cv2.rectangle(img,(x,y),(x+w,y+h),(255,0,0),2)
# convert BGR image to RGB for plotting
cv_rgb = cv2.cvtColor(img, cv2.COLOR_BGR2RGB)
# display the image, along with bounding box
plt.imshow(cv_rgb)
plt.show()
Before using any of the face detectors, it is standard procedure to convert the images to grayscale. The detectMultiScale
function executes the classifier stored in face_cascade
and takes the grayscale image as a parameter.
In the above code, faces
is a numpy array of detected faces, where each row corresponds to a detected face. Each detected face is a 1D array with four entries that specifies the bounding box of the detected face. The first two entries in the array (extracted in the above code as x
and y
) specify the horizontal and vertical positions of the top left corner of the bounding box. The last two entries in the array (extracted here as w
and h
) specify the width and height of the box.
We can use this procedure to write a function that returns True
if a human face is detected in an image and False
otherwise. This function, aptly named face_detector
, takes a string-valued file path to an image as input and appears in the code block below.
# returns "True" if face is detected in image stored at img_path
def human_face_detector(img_path):
img = cv2.imread(img_path)
gray = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY)
faces = face_cascade.detectMultiScale(gray)
if len(faces) > 0:
return True
else:
return False
Question 1: Use the code cell below to test the performance of the face_detector
function.
human_files
have a detected human face? dog_files
have a detected human face? Ideally, we would like 100% of human images with a detected face and 0% of dog images with a detected face. You will see that our algorithm falls short of this goal, but still gives acceptable performance. We extract the file paths for the first 100 images from each of the datasets and store them in the numpy arrays human_files_short
and dog_files_short
.
Answer:
Human images identified as human: 98%
Dog images identified as human: 17%
from tqdm import tqdm
human_files_short = human_files[:100]
dog_files_short = dog_files[:100]
#-#-# Do NOT modify the code above this line. #-#-#
## TODO: Test the performance of the face_detector algorithm
## on the images in human_files_short and dog_files_short.
human_files_faces = []
for file in human_files_short:
has_face = human_face_detector(file)
human_files_faces.append(has_face)
# Check for human faces in dog files
dog_files_human_faces = []
for file in dog_files_short:
has_face = human_face_detector(file)
dog_files_human_faces.append(has_face)
# Display results
print('Human images identified as human: ' + str(sum(human_files_faces)) + '%')
print('Dog images identified as human: ' + str(sum(dog_files_human_faces)) + '%')
We suggest the face detector from OpenCV as a potential way to detect human images in your algorithm, but you are free to explore other approaches, especially approaches that make use of deep learning :). Please use the code cell below to design and test your own face detection algorithm. If you decide to pursue this optional task, report performance on human_files_short
and dog_files_short
.
In this section, we use a pre-trained model to detect dogs in images.
The code cell below downloads the VGG-16 model, along with weights that have been trained on ImageNet, a very large, very popular dataset used for image classification and other vision tasks. ImageNet contains over 10 million URLs, each linking to an image containing an object from one of 1000 categories.
import torch
import torchvision.models as models
# define VGG16 model
VGG16 = models.vgg16(pretrained=True)
# check if CUDA is available
use_cuda = torch.cuda.is_available()
# move model to GPU if CUDA is available
if use_cuda:
VGG16 = VGG16.cuda()
VGG16
Given an image, this pre-trained VGG-16 model returns a prediction (derived from the 1000 possible categories in ImageNet) for the object that is contained in the image.
In the next code cell, you will write a function that accepts a path to an image (such as 'dogImages/train/001.Affenpinscher/Affenpinscher_00001.jpg'
) as input and returns the index corresponding to the ImageNet class that is predicted by the pre-trained VGG-16 model. The output should always be an integer between 0 and 999, inclusive.
Before writing the function, make sure that you take the time to learn how to appropriately pre-process tensors for pre-trained models in the PyTorch documentation.
from PIL import Image
import torchvision.transforms as transforms
def VGG16_predict(img_path):
'''
Use pre-trained VGG-16 model to obtain index corresponding to
predicted ImageNet class for image at specified path
Args:
img_path: path to an image
Returns:
Index corresponding to VGG-16 model's prediction
'''
## TODO: Complete the function.
## Load and pre-process an image from the given img_path
## Return the *index* of the predicted class for that image
img = Image.open(img_path)
data_transform = transforms.Compose([transforms.Resize((224,224)),
transforms.ToTensor()])
img = data_transform(img).unsqueeze_(0)
if use_cuda:
img = img.cuda()
VGG16.eval()
value, index = torch.max(VGG16(img), 1)
return index # predicted class index
predictions = []
for file in dog_files_short[:100]:
predictions.append(VGG16_predict(file))
# Distribution of predictions
plt.hist(predictions)
While looking at the dictionary, you will notice that the categories corresponding to dogs appear in an uninterrupted sequence and correspond to dictionary keys 151-268, inclusive, to include all categories from 'Chihuahua'
to 'Mexican hairless'
. Thus, in order to check to see if an image is predicted to contain a dog by the pre-trained VGG-16 model, we need only check if the pre-trained model predicts an index between 151 and 268 (inclusive).
Use these ideas to complete the dog_detector
function below, which returns True
if a dog is detected in an image (and False
if not).
### returns "True" if a dog is detected in the image stored at img_path
def dog_detector(img_path):
## TODO: Complete the function.
prediction = torch.Tensor.cpu(VGG16_predict(img_path)).numpy()[0]
if prediction >= 151 and prediction <= 268:
dog_detected = True
else:
dog_detected = False
return dog_detected # true/false
# Test dog detector
print(dog_detector(dog_files_short[62]))
dog = cv2.imread(dog_files_short[62])
plt.imshow(dog)
dogs_detected_dog_files = []
# Detect dogs in dog files
for file in dog_files_short:
dogs_detected_dog_files.append(dog_detector(file))
dogs_detected_human_files = []
# Detect dogs in human files
for file in human_files_short:
dogs_detected_human_files.append(dog_detector(file))
Question 2: Use the code cell below to test the performance of your dog_detector
function.
human_files_short
have a detected dog? dog_files_short
have a detected dog?Answer:
Dogs detected in dog files: 97%
Dogs detected in human files: 0%
We suggest VGG-16 as a potential network to detect dog images in your algorithm, but you are free to explore other pre-trained networks (such as Inception-v3, ResNet-50, etc). Please use the code cell below to test other pre-trained PyTorch models. If you decide to pursue this optional task, report performance on human_files_short
and dog_files_short
.
### TODO: Test the performance of the dog_detector function
### on the images in human_files_short and dog_files_short.
print('Dogs detected in dog files: ' + str(sum(dogs_detected_dog_files)) + '%')
print('Dogs detected in human files: ' + str(sum(dogs_detected_human_files)) + '%')
Now that we have functions for detecting humans and dogs in images, we need a way to predict breed from images. In this step, you will create a CNN that classifies dog breeds. You must create your CNN from scratch (so, you can't use transfer learning yet!), and you must attain a test accuracy of at least 10%. In Step 4 of this notebook, you will have the opportunity to use transfer learning to create a CNN that attains greatly improved accuracy.
We mention that the task of assigning breed to dogs from images is considered exceptionally challenging. To see why, consider that even a human would have trouble distinguishing between a Brittany and a Welsh Springer Spaniel.
Brittany | Welsh Springer Spaniel |
---|---|
It is not difficult to find other dog breed pairs with minimal inter-class variation (for instance, Curly-Coated Retrievers and American Water Spaniels).
Curly-Coated Retriever | American Water Spaniel |
---|---|
Likewise, recall that labradors come in yellow, chocolate, and black. Your vision-based algorithm will have to conquer this high intra-class variation to determine how to classify all of these different shades as the same breed.
Yellow Labrador | Chocolate Labrador | Black Labrador |
---|---|---|
We also mention that random chance presents an exceptionally low bar: setting aside the fact that the classes are slightly imabalanced, a random guess will provide a correct answer roughly 1 in 133 times, which corresponds to an accuracy of less than 1%.
Remember that the practice is far ahead of the theory in deep learning. Experiment with many different architectures, and trust your intuition. And, of course, have fun!
Use the code cell below to write three separate data loaders for the training, validation, and test datasets of dog images (located at dog_images/train
, dog_images/valid
, and dog_images/test
, respectively). You may find this documentation on custom datasets to be a useful resource. If you are interested in augmenting your training and/or validation data, check out the wide variety of transforms!
import os
from glob import glob
import numpy as np
import torch
from torchvision import datasets
import torchvision.transforms as T
from torch.nn import functional as F
import matplotlib.pyplot as plt
import cv2
from PIL import Image, ImageFile
ImageFile.LOAD_TRUNCATED_IMAGES = True
# check if CUDA is available
use_cuda = torch.cuda.is_available()
if not use_cuda:
print('CUDA is not available. Training on CPU ...')
else:
print('CUDA is available! Training on GPU ...')
### TODO: Write data loaders for training, validation, and test sets
## Specify appropriate transforms, and batch_sizes
train_path = '/data/dog_images/train'
test_path = '/data/dog_images/test/'
valid_path = '/data/dog_images/valid'
# Random crops, horizontal flips and rotations to augment dataset
data_transform_train = T.Compose([
T.RandomResizedCrop(224),
T.RandomHorizontalFlip(),
T.RandomRotation(10),
T.ToTensor(),
T.Normalize((0.5, 0.5, 0.5), (0.5, 0.5, 0.5))])
data_transform_test = T.Compose([
T.Resize((224,224)),
T.ToTensor(),
T.Normalize((0.5, 0.5, 0.5), (0.5, 0.5, 0.5))])
dog_files_train = datasets.ImageFolder(train_path, transform=data_transform_train)
dog_files_test = datasets.ImageFolder(test_path, transform=data_transform_test)
dog_files_valid = datasets.ImageFolder(test_path, transform=data_transform_test)
# Print folder counts
print('Training image count: ' + str(len(dog_files_train)))
print('Test image count: ' + str(len(dog_files_test)))
print('Validation image count: ' + str(len(dog_files_valid)))
# define dataloader parameters
batch_size = 20
num_workers=0
# prepare data loaders
train_loader = torch.utils.data.DataLoader(dog_files_train, batch_size=batch_size,
num_workers=num_workers, shuffle=True)
test_loader = torch.utils.data.DataLoader(dog_files_test, batch_size=batch_size,
num_workers=num_workers, shuffle=False)
valid_loader = torch.utils.data.DataLoader(dog_files_valid, batch_size=batch_size,
num_workers=num_workers, shuffle=False)
# DataLoader dictionary
loaders_scratch = {}
loaders_scratch['train'] = train_loader
loaders_scratch['test'] = test_loader
loaders_scratch['valid'] = valid_loader
Question 3: Describe your chosen procedure for preprocessing the data.
Answer:
The code takes random 224x224 crops of the images.
224 was chosen as the input image size because it has 2^5 as a factor, and the pooling steps reduce the dimensions of the inputs by factors of 2.
Horizontal flips and rotations are used augment the dataset.
Create a CNN to classify dog breed. Use the template in the code cell below.
import torch.nn as nn
import torch.nn.functional as F
# define the CNN architecture
class Net(nn.Module):
### TODO: choose an architecture, and complete the class
def __init__(self):
super(Net, self).__init__()
## Define layers of a CNN
# input size = (3, 224, 224)
self.conv1 = nn.Conv2d(3, 64, kernel_size = 3, stride = 1, padding = 1)
# input size = (64, 112, 112)
self.conv2 = nn.Conv2d(64, 128, kernel_size = 3, stride = 1, padding = 1)
# input size = (128, 56, 56)
self.conv3 = nn.Conv2d(128, 256, kernel_size = 3, stride = 1, padding = 1)
# input size = (256, 28, 28)
self.conv4 = nn.Conv2d(256, 512, kernel_size = 3, stride = 1, padding = 1)
# input size = (512, 14, 14)
self.conv5 = nn.Conv2d(512, 512, kernel_size = 3, stride = 1, padding = 1)
# input size = (1, 25088)
self.fc1 = nn.Linear(25088, 2500)
self.bn1 = nn.BatchNorm1d(2500)
self.fc2 = nn.Linear(2500, 500)
self.bn2 = nn.BatchNorm1d(500)
self.fc3 = nn.Linear(500, 133)
# BatchNorm to speed up training
self.bn0 = nn.BatchNorm1d(25088)
# Dropout to prevent overfitting
self.dropout = nn.Dropout(0.2)
# MaxPool for dimensionality reduction
self.pool = nn.MaxPool2d(2,2)
def forward(self, x):
## Define forward behavior
# Convolutional layers
x = F.relu(self.conv1(x))
x = self.pool(x)
x = F.relu(self.conv2(x))
x = self.pool(x)
x = F.relu(self.conv3(x))
x = self.pool(x)
x = F.relu(self.conv4(x))
x = self.pool(x)
x = F.relu(self.conv5(x))
x = self.pool(x)
# Classifier layers
# Linear -> BatchNorm -> ReLu -> Dropout
x = x.view(-1, 25088)
x = self.bn0(x)
x = self.dropout(x)
x = self.fc1(x)
x = self.bn1(x)
x = F.relu(x)
x = self.dropout(x)
x = self.fc2(x)
x = self.bn2(x)
x = F.relu(x)
x = self.dropout(x)
x = self.fc3(x)
return x
#-#-# You so NOT have to modify the code below this line. #-#-#
# instantiate the CNN
model_scratch = Net()
# move tensors to GPU if CUDA is available
if use_cuda:
model_scratch.cuda()
print(model_scratch)
import torch.optim as optim
Question 4: Outline the steps you took to get to your final CNN architecture and your reasoning at each step.
Answer:
I used five convolutional layers, each with relu and maxpool. Together these reduce the dimensions of the image tensors from 224x224 to 7x7, after which point they are flattened.
I then use three sequences of linear layers with batch normalization, relu and dropout. Batch normalization speeds up training by normalizing the input of each successive linear layer, and dropout regularizes the classifier to prevent overfitting.
The output of the network is a 133 length vector with an element for each dog breed. The element with the maximum value corresponds to the index of the predicted dog breed.
Use the next code cell to specify a loss function and optimizer. Save the chosen loss function as criterion_scratch
, and the optimizer as optimizer_scratch
below.
import torch.optim as optim
### TODO: select loss function
criterion_scratch = nn.CrossEntropyLoss()
### TODO: select optimizer
optimizer_scratch = optim.SGD(model_scratch.parameters(), lr=0.0001, momentum=0.9)
Train and validate your model in the code cell below. Save the final model parameters at filepath 'model_scratch.pt'
.
def train(n_epochs, loaders, model, optimizer, criterion, use_cuda, save_path):
"""returns trained model"""
# initialize tracker for minimum validation loss
valid_loss_min = np.Inf
for epoch in range(1, n_epochs+1):
# initialize variables to monitor training and validation loss
train_loss = 0.0
valid_loss = 0.0
###################
# train the model #
###################
model.train()
for batch_idx, (data, target) in enumerate(loaders['train']):
# move to GPU
if use_cuda:
data, target = data.cuda(), target.cuda()
## find the loss and update the model parameters accordingly
# clear the gradients of all optimized variables
optimizer.zero_grad()
# forward pass: compute predicted outputs by passing inputs to the model
output = model(data)
# calculate the batch loss
loss = criterion(output, target)
# backward pass: compute gradient of the loss with respect to model parameters
loss.backward()
# perform a single optimization step (parameter update)
optimizer.step()
# update training loss
## record the average training loss, using something like
train_loss = train_loss + ((1 / (batch_idx + 1)) * (loss.data - train_loss))
######################
# validate the model #
######################
model.eval()
for batch_idx, (data, target) in enumerate(loaders['valid']):
# move to GPU
if use_cuda:
data, target = data.cuda(), target.cuda()
## update the average validation loss
output = model(data)
# calculate the batch loss
loss = criterion(output, target)
valid_loss = valid_loss + ((1 / (batch_idx + 1)) * (loss.data - valid_loss))
# print training/validation statistics
print('Epoch: {} \tTraining Loss: {:.6f} \tValidation Loss: {:.6f}'.format(
epoch,
train_loss,
valid_loss
))
## TODO: save the model if validation loss has decreased
if valid_loss <= valid_loss_min:
print('Validation loss decreased ({:.6f} --> {:.6f}). Saving model ...'.format(
valid_loss_min,
valid_loss))
torch.save(model.state_dict(), save_path)
valid_loss_min = valid_loss
# return trained model
return model
# Ensure we're in the correct directory
os.chdir('/home/workspace/dog_project')
# Load checkpoint if it exists
try:
model_scratch.load_state_dict(torch.load('model_scratch.pt'))
except:
print('An error occured.')
# Check if GPU is available
use_cuda = torch.cuda.is_available()
# train the model
model_scratch = train(100, loaders_scratch, model_scratch, optimizer_scratch,
criterion_scratch, use_cuda, 'model_scratch.pt')
# load the model that got the best validation accuracy
model_scratch.load_state_dict(torch.load('model_scratch.pt'))
Try out your model on the test dataset of dog images. Use the code cell below to calculate and print the test loss and accuracy. Ensure that your test accuracy is greater than 10%.
def test(loaders, model, criterion, use_cuda):
# monitor test loss and accuracy
test_loss = 0.
correct = 0.
total = 0.
model.eval()
for batch_idx, (data, target) in enumerate(loaders['test']):
# move to GPU
if use_cuda:
data, target = data.cuda(), target.cuda()
# forward pass: compute predicted outputs by passing inputs to the model
output = model(data)
# calculate the loss
loss = criterion(output, target)
# update average test loss
test_loss = test_loss + ((1 / (batch_idx + 1)) * (loss.data - test_loss))
# convert output probabilities to predicted class
pred = output.data.max(1, keepdim=True)[1]
# compare predictions to true label
correct += np.sum(np.squeeze(pred.eq(target.data.view_as(pred))).cpu().numpy())
total += data.size(0)
print('Test Loss: {:.6f}\n'.format(test_loss))
print('\nTest Accuracy: %2d%% (%2d/%2d)' % (
100. * correct / total, correct, total))
# call test function
test(loaders_scratch, model_scratch, criterion_scratch, use_cuda)
You will now use transfer learning to create a CNN that can identify dog breed from images. Your CNN must attain at least 60% accuracy on the test set.
Use the code cell below to write three separate data loaders for the training, validation, and test datasets of dog images (located at dogImages/train
, dogImages/valid
, and dogImages/test
, respectively).
If you like, you are welcome to use the same data loaders from the previous step, when you created a CNN from scratch.
## TODO: Specify data loaders
loaders_transfer = loaders_scratch
Use transfer learning to create a CNN to classify dog breed. Use the code cell below, and save your initialized model as the variable model_transfer
.
import torchvision.models as models
import torch.nn as nn
## TODO: Specify model architecture
model_transfer = models.vgg16(pretrained=True)
# Replace last classifier layer with correct number of outputs
model_transfer.classifier[6] = torch.nn.Linear(4096, 133, bias = True)
# Freeze training for all "features" layers
for param in model_transfer.features.parameters():
param.requires_grad = False
Question 5: Outline the steps you took to get to your final CNN architecture and your reasoning at each step. Describe why you think the architecture is suitable for the current problem.
Answer:
For the transfer model, I use the pretrained feature learning layers of VGG16 but replace the last classification layer with a linear layer with the output size for this problem. Since the feature layers of VGG16 have been trained on a large dataset with many classes, including many dog breeds, it should understand what a dog looks like and create a good flattened vector encoding.
Thus, we only need to train the fully connected layers that are responsible for classifying the dog breed based on the labels in our dataset.
Use the next code cell to specify a loss function and optimizer. Save the chosen loss function as criterion_transfer
, and the optimizer as optimizer_transfer
below.
import torch.optim as optim
# Define loss function and optimizer
criterion_transfer = nn.CrossEntropyLoss()
optimizer_transfer = optim.SGD(model_transfer.classifier.parameters(), lr=0.001)
use_cuda = torch.cuda.is_available()
if use_cuda:
model_transfer = model_transfer.cuda()
# Load checkpoint if it exists
try:
model_transfer.load_state_dict(torch.load('model_transfer.pt'))
except:
print('An error occured.')
Train and validate your model in the code cell below. Save the final model parameters at filepath 'model_transfer.pt'
.
train(25, loaders_transfer, model_transfer, optimizer_transfer, criterion_transfer, use_cuda, 'model_transfer.pt')
Try out your model on the test dataset of dog images. Use the code cell below to calculate and print the test loss and accuracy. Ensure that your test accuracy is greater than 60%.
test(loaders_transfer, model_transfer, criterion_transfer, use_cuda)
Write a function that takes an image path as input and returns the dog breed (Affenpinscher
, Afghan hound
, etc) that is predicted by your model.
# list of class names by index, i.e. a name can be accessed like class_names[0]
train_classes = os.listdir('/data/dog_images/train')
test_classes = os.listdir('/data/dog_images/test')
valid_classes = os.listdir('/data/dog_images/valid')
classes = list(set(train_classes + test_classes + valid_classes))
classes = sorted(classes)
class_names = [item[4:].replace("_", " ") for item in classes]
### TODO: Write a function that takes a path to an image as input
### and returns the dog breed that is predicted by the model.
def predict_breed_transfer(img_path):
'''
Predicts single image from path
Prints original image in console with predicted breed
Args:
path (str): image file path
Returns:
prediction (str): predicted class
'''
# Open image from path with PIL
raw_img = Image.open(img_path)
# Apply transforms, unsqueeze and convert to cuda
if use_cuda:
img = data_transform_test(raw_img).unsqueeze_(0).cuda()
else:
img = data_transform_test(raw_img).unsqueeze_(0)
# Predict with model and lookup class from dictionary
model_transfer.eval()
prediction = class_names[model_transfer(img).argmax()]
return prediction
# Test dog breed classifier
predict_breed_transfer(dog_files_short[0])
Write an algorithm that accepts a file path to an image and first determines whether the image contains a human, dog, or neither. Then,
You are welcome to write your own functions for detecting humans and dogs in images, but feel free to use the face_detector
and human_detector
functions developed above. You are required to use your CNN from Step 4 to predict dog breed.
Some sample output for our algorithm is provided below, but feel free to design your own user experience!
### TODO: Write your algorithm.
### Feel free to use as many code cells as needed.
def run_app(img_path):
## handle cases for a human face, dog, and neither
raw_img = Image.open(img_path)
breed = predict_breed_transfer(img_path)
#fig = plt.figure()
if dog_detector(img_path):
result = 'Predicted breed: ' + str(breed)
plt.imshow(raw_img)
plt.title(result)
elif human_face_detector(img_path):
result = 'I know you\'re human... \n ...but you look like a ' + str(breed)
plt.imshow(raw_img)
plt.title(result)
else:
result = 'An error occurred.'
plt.imshow(raw_img)
plt.title(result)
run_app(dog_files_short[10])
run_app(human_files_short[15])
In this section, you will take your new algorithm for a spin! What kind of dog does the algorithm think that you look like? If you have a dog, does it predict your dog's breed accurately? If you have a cat, does it mistakenly think that your cat is a dog?
Test your algorithm at least six images on your computer. Feel free to use any images you like. Use at least two human and two dog images.
Question 6: Is the output better than you expected :) ? Or worse :( ? Provide at least three possible points of improvement for your algorithm.
Answer:
The output of this algorithm works as expected. It classifies dog image with a high degree of accuracy, especially considering the large number of breeds and how many of them look similar.
Three ways to improve the algorithm:
test_files = glob('test_images/*')
test_files
## TODO: Execute your algorithm from Step 6 on
## at least 6 images on your computer.
## Feel free to use as many code cells as needed.
# Create random array to pick random images
rand = np.random.randint(0, 100, size=6)
rand
## suggested code, below
for file in test_files:
fig = plt.figure()
run_app(file)